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Marginal and MAP

X2

X4

X1

X3

Marginal inference: P(xi ) =
∑
xj :j 6=i

P(x1, x2, x3, x4)

MAP inference: (x∗1 , x
∗
2 , x
∗
3 , x
∗
4 ) = argmax

x1,x2,x3,x4
P(x1, x2, x3, x4)

In general, x∗i 6= argmax
xi

P(xi )
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Marginals

When do we need marginals? Marginals are used to compute

normalisation constant
Z =

∑
xi
q(xi ) =

∑
xj
q(xj) ∀i , j = 1, . . . .

log loss in CRFs is − logP(x1, . . . , xn) = log(Z ) + . . .

expectations like EP(xi )[φ(xi )] and EP(xi ,xj )[φ(xi , xj)], where
ψ(xi ) = 〈φ(xi ),w〉 and ψ(xi , xj) = 〈φ(xi , xj),w〉
Gradient of CRFs risk contains above expectations.
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MAP

When do we need MAP?

find the most likely configuration for (xi )i∈V in testing.

find the most violated constraint generated by (x†i )i∈V in
training (i.e. learning), e.g. by cutting plane method (used in
SVM-Struct) or by Bundle method for Risk Minimisation (Teo
JMLR2010).
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Variable elimination
Max-product
Sum-product

Variable elimination

max
x1,x2,x3,x4

P(x1, x2, x3, x4)

= max
x1,x2,x3,x4

ψ(x1, x2)ψ(x2, x3)ψ(x2, x4)ψ(x1)ψ(x2)ψ(x3)ψ(x4)

= max
x1,x2

[
. . .max

x3

(
ψ(x2, x3)ψ(x3)

)
max
x4

(
ψ(x2, x4)ψ(x4)

)]
= max

x1

[
ψ(x1) max

x2

(
ψ(x2)ψ(x1, x2)m3→2(x2)m4→2(x2)

)]
= max

x1

(
ψ(x1)m2→1(x1)

)
⇒ x∗1 = argmax

x1

(
ψ(x1)m2→1(x1)

)
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Variable elimination
Max-product
Sum-product

Max-product

Variable elimination for MAP ⇒ Max-product:

x∗i = argmax
xi

(
ψ(xi )

∏
j∈Ne(i)

mj→i (xi )
)

mj→i (xi ) = max
xj

(
ψ(xj)ψ(xi , xj)

∏
k∈Ne(j)\{i}

mk→j(xj)
)

Ne(i): neighbouring nodes of i (i.e. nodes that connect with i).

Ne(j)\{i} = ∅ if j has only one edge connecting it. e.g. x1, x3, x4.
For such node j ,

mj→i (xi ) = max
xj

(
ψ(xj)ψ(xi , xj)

)
Easier computation!
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Variable elimination
Max-product
Sum-product

Max-product

Order matters: message m2→3(x3) requires m1→2(x2) and m4→2(x2).

X2

X4

X1

X3 X4X3

X2

X1

m1->2(X2)

m3->2(X2) m4->2(X2)

X4X3

X2

X1

m2->1(X1)

m2->3(X3) m2->4(X4)

Alternatively, leaves to root, and root to leaves.

X2

X4

X1

X3 X4X3

X2

X1

m2->1(X1)

m3->2(X2) m4->2(X2)

X4X3

X2

X1

m1->2(X2)

m2->3(X3) m2->4(X4)
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Variable elimination
Max-product
Sum-product

Sum-product

Variable elimination for marginal ⇒ Sum-product:

P(xi ) =
1

Z

(
ψ(xi )

∏
j∈Ne(i)

mj→i (xi )
)

mj→i (xi ) =
∑
xj

(
ψ(xj)ψ(xi , xj)

∏
k∈Ne(j)\{i}

mk→j(xj)
)
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Variable elimination
Max-product
Sum-product

Extension

To avoid over/under flow, often operate in the log space.

Max/sum-product is also known as Message Passing and Belief
Propagation (BP).

In graphs with loops, running BP for several iterations is known as
Loopy BP (neither convergence nor optimal guarantee in general).

Extend to Junction Tree Algorithm (exact, but expensive) and
Clusters-based BP.

Qinfeng (Javen) Shi Lecture 8: PGM — Inference



Message Passing
Optimisation Approaches

Sampling Approaches

LP Relaxations
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LP Relaxations

Assume pairwise MRFs with graph G (V,E)

P(X |Y) =
1

Z

∏
(i ,j)∈E

ψi ,j(xi , xj)
∏
i∈V

ψi (xi )

=
1

Z
exp

( ∑
(i ,j)∈E

θi ,j(xi , xj) +
∑
i∈V

θi (xi )
)

MAP X∗ = argmax
X

∏
(i ,j)∈E

ψi ,j(xi , xj)
∏
i∈V

ψi (xi )

= argmax
X

∑
(i ,j)∈E

θi ,j(xi , xj) +
∑
i∈V

θi (xi )
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LP Relaxations
QP Relaxations

LP Relaxations

argmax
X

∑
(i ,j)∈E

θi ,j(xi , xj) +
∑
i∈V

θi (xi )

⇔ the following Integer Program:

argmax
{q}

∑
(i ,j)∈E

∑
xi ,xj

qi ,j(xi , xj)θi ,j(xi , xj) +
∑
i∈V

∑
xi

qi (xi )θi (xi )

s.t. qi ,j(xi , xj) ∈ {0, 1},
∑
xi ,xj

qi ,j(xi , xj) = 1,
∑
xi

qi ,j(xi , xj) = qj(xj).

Relax to Linear Program:

argmax
{q}

∑
(i ,j)∈E

∑
xi ,xj

qi ,j(xi , xj)θi ,j(xi , xj) +
∑
i∈V

∑
xi

qi (xi )θi (xi )

s.t. qi ,j(xi , xj) ∈ [0, 1],
∑
xi ,xj

qi ,j(xi , xj) = 1,
∑
xi

qi ,j(xi , xj) = qj(xj).
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QP Relaxations

Imposing qi ,j(xi , xj) = qi (xi )qj(xj) yields QP:

argmax
{q}

∑
(i ,j)∈E

∑
xi ,xj

qi (xi )qj(xj)θi ,j(xi , xj) +
∑
i∈V

∑
xi

qi (xi )θi (xi )

s.t. qi (xi ) ∈ [0, 1],
∑
xi

qi (xi ) = 1.

Rewrite objective function as

yT Θ y+ yT θ,

where y = [qi (xi )]i∈V ,xi∈Val(X ) ∈ RN , θ = [θi (xi )]i ,xi ∈ RN , and

Θ = [θi ,j(xi , xj)]i ,xi ,j ,xj ∈ RN×N .
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LP Relaxations
QP Relaxations

QP Relaxations

Problem: yT Θ y+ yT θ may not be concave i.e. Θ may not be
negative semidefinite (NSD).

Solution: To find a d ∈ RN , such that (Θ− diag(d)) is NSD.
Given d, we have
yT Θ y+ yT θ = yT (Θ− diag(d)) y+(y+d)Tθ + g(d, y),
where the gap g(d, y) = yT diag(d) y−dT θ =

∑N
i=1 di (yi − y2i ).

Note for yi ∈ {0, 1}, yi − y2i = 0, thus g(d, y) = 0 1. So we know

yT Θ y+ yT θ ≈ yT (Θ− diag(d)) y+(y+d)Tθ︸ ︷︷ ︸
Concave

argmax
y

yT (Θ− diag(d)) y+(y+d)Tθ

1In general for yi ∈ [0, 1], yi − y 2
i ≥ 0, thus g(d, y) ≥ 0
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LP Relaxations
QP Relaxations

QP Relaxations

Problem: yT Θ y+ yT θ may not be concave i.e. Θ may not be
negative semidefinite (NSD).

Solution: To find a d ∈ RN , such that (Θ− diag(d)) is NSD.
Given d, we have
yT Θ y+ yT θ = yT (Θ− diag(d)) y+(y+d)Tθ + g(d, y),
where the gap g(d, y) = yT diag(d) y−dT θ =

∑N
i=1 di (yi − y2i ).

Note for yi ∈ {0, 1}, yi − y2i = 0, thus g(d, y) = 0 1. So we know

yT Θ y+ yT θ ≈ yT (Θ− diag(d)) y+(y+d)Tθ︸ ︷︷ ︸
Concave

argmax
y

yT (Θ− diag(d)) y+(y+d)Tθ

1In general for yi ∈ [0, 1], yi − y 2
i ≥ 0, thus g(d, y) ≥ 0

Qinfeng (Javen) Shi Lecture 8: PGM — Inference



Message Passing
Optimisation Approaches

Sampling Approaches

LP Relaxations
QP Relaxations

Break

Take a break ...

Qinfeng (Javen) Shi Lecture 8: PGM — Inference



Message Passing
Optimisation Approaches

Sampling Approaches

Forward sampling
Likelihood weighting sampling
Importance sampling inference

Understanding samples

In fact, there is no way to check ’a sample’ is from a distribution
or not — two totally different distributions can generate the same
sample. For example, uniform[0, 1] and gaussian N(0, 1) can both
generate a sample with value 0. Looking at a sample with value =
0 alone, how do you know its distribution for sure? What we really
check (and know for sure) is the way that the samples were
generated. When we say a procedure generates a sample from a
distribution P, what we really mean is that keeping sampling this
way (by the procedure), the normalised histogram Hn with n
samples is going to converge to the distribution P. That is
Hn → P as n→∞. If we don’t know the way that the samples
were generated, we never know what’s the distribution for sure —
we can only guess (e.g. using statistical tests) based on a number
of available samples.
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Overview

Monte Carlo

Importance sampling

Acceptance-rejection sampling

· · ·
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Monte Carlo

Monte Carlo methods are a class of computational algorithms that
rely on repeated random sampling to compute their results.

repeat
draw sample(s)
compute result according to the samples

until sampled enough ( or the result is stable)
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Monte Carlo

To estimate π ( area of a circle with radius r is Sc = πr2).
Idea:

draw a circle ( r = 1) and a rectangle (2r × 2r) enclosing the
circle. We know the area of the rectangle is Srec = (2r)2. If
we can estimate the area of the circle, then we can estimate π
by π = Sc/r

2.

Draw a sample point from the rectangle area uniformly. The
chance of it being within the circle is Sc/Srec . So if we throw
enough points, we have Nwithin/Ntotal ≈ Sc/Srec . Thus
Sc ≈ SrecNwithin/Ntotal . Theorefore,

π ≈ SrecNwithin/Ntotal

r2
= 4Nwithin/Ntotal

See a matlab demo.
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Monte Carlo
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Monte Carlo

To estimate an expectation:
Generate samples xi ∼ q(X ), i = 1, . . . ,N.

EX∼q(X )[f (X )] ≈ ÊX∼q(X )[f (X )]

=
1

N

N∑
i=1

f (xi ),
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Importance sampling

To compute EX∼p(X )[f (X )].
Assume p(x) (target distribution) is hard to sample from directly, and
q(x) (proposal distribution) is easy to sample from and q(x) > 0 when
p(x) > 0.

EX∼p(X )[f (X )] =

∫
x

p(x)f (x)dx

=

∫
x

q(x)
p(x)

q(x)
f (x)dx

= EX∼q(X )[
p(X )

q(X )
f (X )].

ÊX∼p(X )[f (X )] = ÊX∼q(X )[
p(X )

q(X )
f (X )],

where ÊX∼q(X )[f (X )] =
1

N

N∑
i=1

f (xi ), xi ∼ q(X ), i = 1, . . . ,N.
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Acceptance-rejection sampling

Target: to sample X from p(x).
Given: q(x) easy to sample from.
Find a constant M such that M · q(x) ≥ p(x), ∀ x .
repeat

step 1: sample Y ∼ q(y)
step 2: sample U ∼ Uniform[0, 1]

if U ≤ p(y)
M·q(y) then

then X = Y ;
else

reject and go to step 1.
end if

until sampled enough
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Acceptance-rejection sampling

Proof:

∵ Pr(accept|X = x) =
p(x)

M · q(x)
and Pr(X = x) = q(x)

∴ Pr(accept) =

∫
x
Pr(accept|X = x) · Pr(X = x)dx

=

∫
x

p(x)

M · q(x)
· q(x)dx =

1

M
( thus don’t want M big)

∴ Pr(X |accept) =
Pr(accept|X ) · P(X )

Pr(accept)

=

p(x)
M·q(x) · q(x)

1
M

= p(x).
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Understanding AR sampling (1)

I guess the most confusing part, is why M comes in. So let’s look
at the case without M first.
Denote the histogram formed by n samples from q(x) as Hn

q , the
histogram formed by n samples from p(x) as Hn

p , the histogram
formed by n accepted samples from AR sampling procedure as Hn.
For a sample x ∼ q(x), if p(x) < q(x), it suggests if you accept all
the x and keep sampling this way, the histogram you will get is Hn

q .
But what you really want to get, is a way that the resulting
histogram H becomes Hn

p . Rejecting some portion of x can make
the histogram H has the same shape as Hp at point x . In other
words, the histogram H has more counts at point x than Hp, so we
remove some counts to make H(x) = Hp(x). (Take a moment to
think this through).
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Understanding AR sampling (2)

What if for a sample x ∼ q(x), p(x) > q(x)? The histogram Hn
q

already has less counts than Hn
p at x . What do we do? Well, we

can sample M × n points from q(x) to build HMn
q first. Now HMn

q

should have more counts than Hn
p at x (because we choose a M

such that p(x) < Mq(x) for all x . If not, choose a larger M).
Visually, HMn

q encloses Hn
p . At point x , we only want to keep

Hn
p (x) many samples from totally HMn

q (x) many. This is how
uniform sampling and M came in. We sample
u ∼ Uniform[0,Mq(x)], accept x when u < p(x) (equivalent to
sample u ∼ Uniform[0, 1], accept x when u < p(x)/Mq(x)). As a
result, after Mn samples, we will get a H close to Hn

p . Moreover,

lim
n→∞

Hn = lim
n→∞

Hn
p = p.
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Understanding AR sampling (3)

Here we can choose any M such that p(x) < Mq(x) for all x . The
bigger M is, the more samples (Mn samples) you need to
approximate Hn

p . That’s why in practice, people want to use the
smallest M (such that p(x) < Mq(x) for all x) to reduce the
number of rejected samples.
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Sampling in PGM inference

Overview:

Forward sampling

Likelihood weighting sampling

Importance sampling inference

· · ·
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Forward sampling

Given an ordering of subsets of random variables {X i}ni=1 (knowing
parents to generate children).
for i = 1 to n do

ui ← Pa(xi−1)
sample xi from P(X i |ui )

end for

G

I

J

S

D

H

L

Difficulty Intelligence

Grade

Happy

Letter

SAT

Job

P(I)

P(S | I)

P(J | L,S)

P(D)

P(G | D,I)

P(H | G,J)

P(L | G)
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Forward sampling

Assume {xi}Mi=1 are M samples from P(X ), we can approximately
compute

expectation:

EX∼P(X )[f (X )] ≈ 1

M

M∑
i=1

f (xi )

MAP solution: argmaxx P(x) ≈ argmaxx∈{xi}Mi=1
P(x)

marginal: P(x) ≈ NX=x/Ntotal

sample from P(X | e) when evidences e:
sample from P(X ) first, and reject x when it does not agree
on e.
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Forward sampling

Problems?
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Forward sampling

Problem: Rejection step in estimating P(X | e) wastes too many
samples when P(e) is small. In real applications, P(e) is almost
always very small.

Question: how do we avoid rejecting samples?
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Forward sampling

How about setting the observed random variables to the observed
values, and then doing forward sampling on the rest?
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Forward sampling

Let’s see if it works.
To sample from P(D, I ,G , L|S = 0) from a simplified PGM.

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

Fixing S = 0, and then sample D, I ,G , L.
Does this give the same result comparing to forward sampling with
rejection?
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Forward sampling

No! It doesn’t.
The samples are not from P(D, I ,G , L|S = 0) at all!
Fixing this lead to Likelihood weighting sampling.

Qinfeng (Javen) Shi Lecture 8: PGM — Inference



Message Passing
Optimisation Approaches

Sampling Approaches

Forward sampling
Likelihood weighting sampling
Importance sampling inference

Likelihood weighting sampling

Input: {Z i = zi}i are observed.
Step 1: set {Z i}i to the observed values.
Step 2: forward sampling the unobserved variables.
Step 3: weight the sample by

∏
i P(zi |Pa(zi ))
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Likelihood weighting sampling inference

To sample from P(D, I ,G , L|S = 0) from the following PGM.

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

Fix S = 0, and forward sample D, I ,G , L. Then weight the sample
by P(D, I ,G , L|S = 0).
Does this give the same result comparing to forward sampling with
rejection?
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Likelihood weighting sampling

EX∼P(D,I ,G ,L|S=0)[f (D, I ,G , L, 0)]

≈ 1

N

N∑
j=1

[f (dj , ij , gj , lj , 0) · P(dj , ij , gj , lj |S = 0)]
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Importance sampling inference

G S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

I

(a) G1 with p(X )

⇒

G S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

I

(b) G2 with q(X )

Mutilate

Sample {xi}Ni=1 from q(X ).

ÊX∼p(X )[f (X )] =
1

N

N∑
i=1

p(xi )

q(xi )
f (xi ).
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MAP Inference Revisit

Primal
Variable Elimination
Message Passing

Max-product, (Loopy) BP)
Junction Tree Algorithm and Clusters-based BP

Optimisation Approaches
Linear Programming (LP) Relaxations
Quadratic programming (QP).
Semidefinite programming (SDP), Second-Order Cone
Programming (SOCP)
. . .

Sampling Approaches
Special potentials (Graph Cut)
. . .

Dual
GMPLP, Dual decomposition
. . .
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Message Passing
Optimisation Approaches

Sampling Approaches

Forward sampling
Likelihood weighting sampling
Importance sampling inference

Marginal Inference Revisit

Many MAP inference methods can be converted to marginal ones
(vice versa).

max-product → sum-product.
LP based dual methods → marginal (via + entropy term (kikuchi
approximation)).
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Message Passing
Optimisation Approaches

Sampling Approaches

Forward sampling
Likelihood weighting sampling
Importance sampling inference

That’s all

Thanks!
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